Architecture of Enterprise Applications 22

HBase & Hive

Haopeng Chen

REliable, INtelligent and Scalable Systems Group (REINS)
Shanghai Jiao Tong University
Shanghai, China
http://reins.se.sjtu.edu.cn/~chenhp

e-mail: chen-hp@sjtu.edu.cn

REliable, INtelligent & Scalable Systems

* Hive
— An Example
— Comparison with traditional db
— Hive QL
— Tables
— Query
 HBase

— Tables
— C(Clients
— HBase vs. RDBMS

Hive RE e

REliable, INtelligent & Scalable Systems

* Hive, a framework for data warehousing on top of Hadoop.

— Hive grew from a need to manage and learn from the huge volumes of
data that Facebook was producing every day from its burgeoning social
network.

— After trying a few different systems, the team chose Hadoop for storage
and processing, since it was cost-effective and met their scalability needs.

* Hive was created to make it possible for analysts with strong
SQL skills (but meager Java programming skills) to run queries
on the huge volumes of data that Facebook stored in HDFS.

— Today, Hiveis a successful Apache project used by many organizations as
a general-purpose, scalable data processing platform.

REliable, INtelligent & Scalable Systems

* In normal use, Hive runs on your workstation and converts
your SQL query into a series of MapReduce jobs for execution
on a Hadoop cluster.

— Hive organizes data into tables, which provide a means for attaching
structure to data stored in HDFS.

— Metadata— such as table schemas—is stored in a database called the

metastore.

An Example RE e

REliable, INtelligent & Scalable Systems

* Let's see how to use Hive to run a query on the weather dataset.
* The first step is to load the data into Hive’s managed storage.

* Just like an RDBMS, Hive organizes its data into tables. We
create a table to hold the weather data using the CREATE

TABLE statement:
CREATE TABLE records
(year STRING, temperature INT, quality INT)
ROW FORMAT DELIMITED
FIELDS TERMINATED BY "\t';

An Example RE e

REliable, INtelligent & Scalable Systems

* Nextwe can populate Hive with the data.

— Thisis just a small sample, for exploratory purposes:

LOAD DATA LOCAL INPATH 'input/ncdc/micro-tab/sample.txt’
OVERWRITE INTO TABLE records;

* Running this command tells Hive to put the specified local file
in its warehouse directory.

— There is no attempt, for example, to parse the file and store it in an
internal database format, since Hive does not mandate any particular file
format.

— Files are stored verbatim: they are not modified by Hive.

An Example REIT™

REliable, INtelligent & Scalable Systems

* Inthis example,we are storing Hive tables on the local
filesystem (fs.default.name is set to its default value of file:///).

— Tables are stored as directories under Hive’s warehouse directory, which
is controlled by the hive.metastore.warehouse.dir,and defaults to
/user/hive /warehouse.

— Thus, the files for the records table are found in the
/user/hive/warehouse/records directory on the local filesystem:

% Is /user/hive/warehouse/record/sample.txt

* Inthis case, there is only one file, sample.txt, but in general
there can be more, and Hive will read all of them when
querying the table.

An Example RE e

REliable, INtelligent & Scalable Systems

* Now that the data isin Hive, we can run a query against it:

hive> SELECT year, MAX(temperature)
> FROM records
> WHERE temperature != 9999
> AND (quality = 0 OR quality = 1 OR quality = 4 OR quality = 5 OR quality = 9)
> GROUP BY year;
1949 111
1950 22

Hive Services RE e

REliable, INtelligent & Scalable Systems

* The Hive shell is only one of several services that you can run using
the hive command.

* Type hive -service help to get a list of available service names; the
most useful are described below.
— cli
* The command line interface to Hive (the shell). This is the default service.

— hiveserver

* Runs Hive as a server exposing a Thrift service, enabling access from a range of
clients written in different languages.

— hwi
* The Hive Web Interface.
— jar
* The Hive equivalent to hadoop jar, a convenient way to run Java applications that
includes both Hadoop and Hive classes on the classpath.

— metastore

* By default, the metastore is run in the same process as the Hive service. Using
this service, it is possible to run the metastore as a standalone (remote) process.

Hive clients

REliable, INtelligent & Scalable Systems

Hive clients
Thrift
application
JDBC Hive JDBC
application |~ Driver |
0DBC
application

u

Hive
server

Hive Web
Interface

Hive services

Hive Storage
and Compute
Metastore Metastore
database
FileSystem f..
Hadoop
v
JobClient |}

The Metastore RE e

REliable, INtelligent & Scalable Systems

 The metastore is the central repository of Hive metadata.

— The metastore is divided into two pieces: a service and the backing store
for the data.

— By default, the metastore service runs in the same JVM as the Hive

service and contains an embedded Derby database instance backed by
the local disk.

— It also supports multiple sessions (and therefore multiple users) is to
use a standalone database. This configurationis referredto as a local
metastore, since the metastore service still runs in the same process as
the Hive service, but connects to a database running in a separate
process, either on the same machine or on a remote machine.

— Going a step further; there’s another metastore configuration called a
remote metastore, where one or more metastore servers run in
separate processes to the Hive service.

The Metastore

REliable, INtelligent & Scalable Systems

Embedded
metastore

Local
metastore

Remote
metastore

Hive Service JUM

Driver

Hive Service JVM

MySQl

Hive Service JVM

Driver |......
| ..‘....

5N 2

< 50
Hive Service JVM .~ ™.

o~
-

Driver Fieeeseeereesinnnnns E.

Comparison with Traditional Databases RE e

REliable, INtelligent & Scalable Systems

e Schema on Read Versus Schema on Write

— In atraditional database, atable’s schemais enforced at data load time.
If the data beingloaded doesn’t conform to the schema, then itis
rejected.

* This design is sometimes called schema on write, since the datais checked
against the schema when it is written into the database.

— Hive, on the other hand, doesn’t verify the data when it is loaded, but
rather when a query isissued.
* Thisis called schema on read.

— There are trade-offs between the two approaches.

* Schema on read makes for a very fast initial load, since the data does not
have to be read, parsed, and serialized to disk in the database’s internal
format.

* Schema on write makes query time performance faster; since the database
can index columns and perform compression on the data.

REliable, INtelligent & Scalable Systems

SQL-92 specification.

Feature
Updates

Transactions
Indexes
Latency
Data types

Functions

Multitable inserts

Create table as
select

saL

UPDATE, INSERT,
DELETE

Supported
Supported
Sub-second

Integral, floating point,
fixed point, text and binary
strings, temporal

Hundreds of built-in
functions

Not supported

Not valid SQL-92, but found
in some databases

HiveQL

INSERT OVERWRITE
TABLE (populates whole ta-
ble or partition)

Not supported
Not supported
Minutes

Integral, floating point, boo-
lean, string, array, map, struct

Dozens of built-in functions

Supported
Supported

* Hive’s SQL dialect, called HiveQL, does not support the full

References

“INSERT OVERWRITE TA-
BLE" on page 392, “Updates, Transac-
tions, and Indexes” on page 376

“Data Types” on page 378

“Operators and Functions”
on page 380

“Multitable insert” on page 393

“CREATE TABLE...AS SE-
LECT" on page 394

REliable, INtelligent & Scalable Systems

SQL-92 specification.

Feature
Select

Joins

Subqueries

Views

Extension points

sQL
5QL-92

SQL-92 or variants (join ta-
blesinthe FROMclause, join
condition in the WHERE
clause)

In any clause. Correlated or
noncorrelated.

Updatable. Materialized or
nonmaterialized.

User-defined functions.
Stored procedures.

HiveQL

Single table or view in the
FROM clause. SORT BY for
partial ordering. LIMIT to
limit number of rows re-
turned. HAVING not
supported.

Inner joins, outer joins, semi

joins, map joins. SQL-92 syn-
tax, with hinting.

Only in the FROM clause. Cor-
related subqueries not sup-
ported

Read-only. Materialized
views not supported

User-defined functions. Map-
Reduce scripts.

* Hive’s SQL dialect, called HiveQL, does not support the full

References
“Querying Data” on page 395

“Joins” on page 397

“Subqueries” on page 400

“Views" on page 401

“User-Defined Functions” on page 402,
“MapReduce Scripts” on page 396

Tables RE e

REliable, INtelligent & Scalable Systems

* A Hive tableislogically made up of the data being stored and
the associated metadata describing the layout of the data in the
table.

— The data typically resides in HDFS, although it may reside in any Hadoop
filesystem, including the local filesystem or S3.

— Hive stores the metadatain a relational database—and not in HDFS.

 Managed Tables and External Tables

— When you create a table in Hive, by default Hive will manage the data,
which means that Hive moves the data into its warehouse directory.

— Alternatively, you may create an external table, which tells Hive to refer
to the data thatis at an existing location outside the warehouse directory.

REliable, INtelligent & Scalable Systems

 Partitions and Buckets

— Hive organizes tables into partitions, a way of dividing a table into
coarse-grained parts based on the value of a partition column.

— Partitions are defined at table creation time using the PARTITIONED BY
clause, which takes a list of column definitions.

* For the hypothetical log files example, we might define a table with records
comprising a timestamp and the log line itself:

CREATE TABLE logs (ts BIGINT, line STRING)
PARTITIONED BY (dt STRING, country STRING);
— When we load data into a partitioned table, the partition values are
specified explicitly:
LOAD DATA LOCAL INPATH 'input/hive/partitions /file1'
INTO TABLE logs
PARTITION (dt="2001-01-01", country="GB");

Tables RE e

REliable, INtelligent & Scalable Systems

 Partitions and Buckets

— Tables or partitions may further be subdivided into buckets, to give extra
structure to the data that may be used for more efficient queries.

— There are two reasons why you might want to organize your tables (or
partitions) into buckets.
* The first is to enable more efficient queries. Bucketing imposes extra

structure on the table, which Hive can take advantage of when performing
certain queries.

* The second reason to bucketa table is to make sampling more efficient.
When working with large datasets, it is very convenient to try out queries on
a fraction of your dataset while you are in the process of developing or
refining them.

CREATE TABLE bucketed_users (id INT, name STRING)
CLUSTERED BY (id) SORTED BY (id ASC)INTO 4 BUCKETS;

Querying Data RE i tre

REliable, INtelligent & Scalable Systems

* Sorting and Aggregating

hive> FROM records?2
> SELECT year, temperature
> DISTRIBUTE BY year
> SORT BY year ASC, temperature DESC;
1949 111
1949 78
1950 22
19500
1950 -11

Querying Data REiT™

REliable, INtelligent & Scalable Systems

 MapReduce Scripts

— Using an approach like Hadoop Streaming, the TRANSFORM, MAP, and
REDUCE clauses make it possible to invoke an external script or program
from Hive.

FROM (
FROM records?2
MAP year, temperature, quality
USING 'is_good_quality.py'
AS year, temperature) map_output
REDUCE year, temperature
USING 'max_temperature_reduce.py'
AS year, temperature;

RLEire

REliable, INtelligent & Scalable Systems

 HBase is a distributed column-oriented database built on top of
HDFS.

— HBase isthe Hadoop application to use when you require real-time
read/write random-access to very large datasets.
— HBase comes at the scaling problem from the opposite direction.
 Itis built from the ground-up to scale linearly just by adding nodes.
— HBase isnot relationaland does not support SQL, but given the proper
problem space,

* itis ableto do what an RDBMS cannot: hostvery large, sparsely populated
tables on clusters made from commodity hardware.

— The canonical HBase use case is the webtable, a table of crawled web
pages and their attributes (such as language and MIME type) keyed by
the web page URL.

* The webtable is large, with row counts that run into the billions.

REliable, INtelligent & Scalable Systems

» Applications store data into labeled tables.
— Tables are made of rows and columns.
— Table cells—the intersection of row and column coordinates—are

versioned.

* By default, their version is a timestamp auto-assigned by HBase at the time
of cell insertion.

* A cell’s content is an uninterpreted array of bytes.
— Table row keys are also byte arrays,

* sotheoretically anything can serve as a row key from strings to binary
representations of long or even serialized data structures.

— Table rows are sorted by row key, the table’s primary key.

* The sortis byte-ordered.
 All table accesses are via the table primary key.

RLEire

REliable, INtelligent & Scalable Systems

» Applications store data into labeled tables.

— Row columns are grouped into column families.

 All column family members have acommon prefix, so, for example, the
columns temperature:air and temperature:dew_pointare both members

of the temperature column family, whereas station:identifier belongs to
the station family.

— The column family prefix must be composed of printable characters.

* The qualifying tail, the column family qualifier; can be made of any arbitrary
bytes.

— A table’s column families must be specified up front as part of the table
schema definition,

* but new column family members can be added on demand.

— In synopsis, HBase tables are like those in an RDBMS,

* only cells are versioned, rows are sorted, and columns can be added on the
fly by the clientas long as the column family they belong to preexists.

RLEire

REliable, INtelligent & Scalable Systems

* Regions
— Tables are automatically partitioned horizontally by HBase into regions.

* Each region comprises a subset of a table’s rows.

* Aregion is denoted by the table it belongs to, its first row, inclusive, and last
row, exclusive.

* Initially, a table comprises a single region, but as the size of the region grows,
after it crosses a configurable size threshold, it splits at a row boundary into
two new regions of approximately equal size.

 Until this first split happens, all loading will be against the single server
hosting the original region.

» As the table grows, the number of its regions grows. Regions are the units
that get distributed over an HBase cluster:

* Locking

— Row updates are atomic, no matter how many row columns constitute
the row-level transaction.

* This keeps the locking model simple.

HBase cluster members REiTre

REliable, INtelligent & Scalable Systems

Master

HBase Clients REiTre

REliable, INtelligent & Scalable Systems

* HBase, like Hadoop, is written in Java.
public class ExampleClient {
public static void main(String[] args) throws IOException {
Configuration config = HBaseConfiguration.create();

// Create table

HBaseAdmin admin = new HBaseAdmin(config);

HTableDescriptor htd = new HTableDescriptor(“test");

HColumnDescriptor hcd = new HColumnDescriptor(“data”);

htd.addFamily(hcd);

admin.createTable(htd);

byte [] tablename = htd.getName();

HTableDescriptor [] tables = admin.listTables();

if (tables.length =1 && Bytes.equals(tablename, tables[0].getName())) {
throw new IOException("Failed create of table");

}

HBase Clients REiTre

REliable, INtelligent & Scalable Systems

* HBase, like Hadoop, is written in Java.
// Run some operations -- a put, a get, and a scan -- against the table.
HTable table = new HTable(config, tablename);
byte [] row1 = Bytes.toBytes("row1");
Put pl = new Put(row1);
byte [] databytes = Bytes.toBytes("data");
pl.add(databytes, Bytes.toBytes("1"), Bytes.toBytes("valuel"));
table.put(p1);
Get g = new Get(row1);
Result result = table.get(g);
System.out.println("Get: " + result);
Scan scan = new Scan();
ResultScanner scanner = table.getScanner(scan);
try {
for (Result scannerResult: scanner) {
System.out.println("Scan: " + scannerResult);
}
} finally {
scanner.close();

}

HBase Clients RE i1

REliable, INtelligent & Scalable Systems

 HBase, like Hadoop, is written in Java.

// Drop the table
admin.disableTable(tablename);

admin.deleteTable(tablename);

}

HBase Versus RDBMS REime

REliable, INtelligent & Scalable Systems

» HBase is a distributed, column-oriented data storage system.

— The table schemas mirror the physical storage, creating a system for
efficient data structure serialization, storage, and retrieval.

— The burden is on the application developer to make use of this storage
and retrieval in the right way.

* Typical RDBMSs are

— fixed-schema, row-oriented databases with ACID properties and a
sophisticated SQL query engine.

— The emphasisis on strong consistency, referential integrity, abstraction
from the physical layer, and complex queries through the SQL language.

— You can easily create secondary indexes, perform complex inner and
outer joins, count, sum, sort, group, and page your data across a
number of tables, rows, and columns.

HBase Versus RDBMS REime

REliable, INtelligent & Scalable Systems

* Hereisa synopsis of how the typical RDBMS scaling story runs. The
following list presumes a successful growing service:

Initial public launch

* Move from local workstation to shared, remote hosted MySQL instance with a well-defined
schema.

Service becomes more popular; too many reads hitting the database

* Add memcached to cache common queries. Reads are now no longer strictly ACID; cached
data must expire.

Service continues to grow in popularity; too many writes hitting the database

* Scale MySQL vertically by buying a beefed up server with 16 cores, 128 GB of RAM, and
banks of 15 k RPM hard drives. Costly.

New features increases query complexity; now we have too many joins

* Denormalize yourdata to reduce joins. (That’s not what they taught me in DBA school!)
Rising popularity swamps the server; things are too slow

» Stop doing any server-side computations.
Some queries are still too slow

* Periodically prematerialize the most complex queries, try to stop joining in most cases.

Reads are OK, but writes are getting slower and slower
* Drop secondary indexes and triggers (no indexes?).

HBase Versus RDBMS REime

REliable, INtelligent & Scalable Systems

* Enter HBase, which has the following characteristics:

— No real indexes

* Rowsare stored sequentially, as are the columns within each row. Therefore, no
issues with index bloat, and insert performance is independent of table size.

— Automatic partitioning

* Asyour tables grow, they will automatically be split into regions and distributed
across all available nodes.

— Scale linearly and automatically with new nodes

* Add a node, point it to the existing cluster, and run the region server. Regions will
automatically rebalance and load will spread evenly.

— Commodity hardware

e Clusters are built on $1,000-$5,000 nodes rather than $50,000 nodes. RDBMSs
are /0 hungry, requiring more costly hardware.

— Fault tolerance

* Lots of nodes means each is relatively insignificant. No need to worry about
individual node downtime.

— Batch processing

« MapReduce integration allows fully parallel, distributed jobs against your data
with locality awareness.

References RE e

REliable, INtelligent & Scalable Systems

* Apache YARN
— http://hadoop.apache.org/docs/current/

* Hadoop: The Definitive Guide
— By Tom White
— O'Reilly Publishing

Thank You!

